Demystifying Gradient Boosting
METIS

~—

I
\

What is Gradient Boosting?

- State of the art machine learning algorithm for tabular prediction problems; especially
those with messy, missing data and high degrees of feature interaction and nonlinearity

* In this introduction we’ll focus on regression, but the general algorithm can be
extended to many tasks, including classification

~

Column names

[Name Team Number Position Age Height Weight College Salary]
- ~
Columns 0 Avery Bradley Boston Celtics 0.0 PG 25.0 6-2 180.0 Texas 7730337.0
is=1
axis 1 | John Holland Boston Celtics 30.0 SG 27.0 6-5 205.0 Boston Uniersity NaN
2 Jonas Jerebko Boston Celtics PF 29.0 6-10 231.0 NaN 5000000.0
Index 3 | Jordan Mickey Boston Celtics PF 6-8 235.0 LSU 1170960.0
label
4 Terry Rozier Boston Celtics PG 5 6-2 Louisville 1824360.0
5 | Jared Sullinger Boston Celtics c m 6-9 Ohio State [2569260.0
6 Evan Turner Boston Celtics SG 27.0 6-7 Ohio State 3425510.0
~— S
._J Missing Data
Index value
axis=0

Gradient Boosting, Intuition?

Gradient Boosting, Intuition!

Gradient boosting is an
ensemble of weak learners

Base models are typically
shallow decision trees

Like an ant colony, each model
makes a small contribution to

residual correction that builds
to a complex prediction system

What are Decision Trees?

~0.1261 -0.0038
55

r A L% o‘)
3001 . & _!b._.. |

| 200 L _3
100 4 « e * |
| L a .
-0.0903 0.0148 041706]
| bmi

300 L2 . . 300 . 300 ‘!\f‘l'--
200 TP S S 200 P —— | 200 ---------m |
100 r I"‘ "" rrvv N 100 L-}ﬁ | 100

~0.3032800 0.1107 ~0.0903-0.0218 0.1706 ~0.0903 0 0637 0‘1706\
age bmi ' bmi .
¥ 1 y A ¥ 1 [\
300 300 300 L 300 |g 300 {, 300 I300 I 300
200 200 200 200 200 1 200 |200 ‘ 200
100 100 100 100 100 + 100 ' 100 100 1°
progr=108.8 progr=83.37 progr=274.0 progr=154 67 progr=137.69 progr=176.86 | progr=208.57 | progr=268.87
n=87 n=B4 n=2 n=45 n=42 n=74 L n=77 | n=31
Prediction
208.57

age sex bmi bp s1 s2 s3 s4 s5 sb
0.07 -0.04 0.03 0.09 0.06 0.02 0.02 -0.00 0.07 -0.02

What are Decision Trees?

Trees generate predictions based on a
series of if/felse binary decisions that
recursively partition the feature space

In regression, these splits are chosen to
minimize variance within the resulting
subsets (nodes)

Each data point will fall within a leaf node
that has no further splits, and its target
prediction will be the mean of that node

What are Residuals?

« Residuals measure the difference

between actual and predicted target 3 || o
values (those generated by a model) 2| B
- The smaller the total magnitude of _ e o1 X -
residuals, the better a model i o1 - — SEEE —
describes a dataset L ; EE RN
| . UL
- Imagine that we started with a bad
model like the constant model on the -; H
right, but combined it with one that o -1s -lo 05 o0 o5 10 15 20

perfectly predicted its error...

Gradient Boosting as a Diagram

- We iteratively reduce our model’s current mistakes (residuals) by
approximating them with a decision tree, and adding that tree to the ensemble

Y Targets Fit Tree to Residuals Y Targets, TO + T1 predictions Fit Tree to Residuals
e @1
PV — \ / ' /
o Residuals @} Residuals
" 70 Constant T+ T
8 initialization + T i """""""""" predictions + T2
[e) (predict mean) .

Model: F(x) = TO + T1(x) + T2(x) + ... + Tk(x)

Gradient Boosting as a Formal Algorithm

After choosing hyperparameters k (number of trees) and d (max depth of each tree):

1. Set Ty, = mean(y)
2.Form=1,...,k:

m—1
A.Setr, 1 =y—(Tp + X T;(X))
j=1

B. Fit max depth d tree T,, with features X, target r,,_;

Obtain final model: F(X) = Ty + T7 (X)+. .. +T1(X)

Gradient Boosting as a Python Class: Initialization

need these to help construct the model

import numpy as np
from sklearn.metrics import r2 score
from sklearn.tree import DecisionTreeRegressor

class GradientBooster():

select hyperparameters at initialization
def init (self, n estimators=10, max depth=3):

self.n estimators = n estimators
self.max depth = max depth

Gradient Boosting as a Python Class: Fitting

def fit(self, X, y):
start with constant prediction (mean)
self.C = np.mean(y)
self.estimators = []

resids = y - self.C

repeatedly fit to, predict, and update current errors
for in range(self.n estimators):

est = DecisionTreeRegressor (max depth=self.max depth)
est.fit (X, resids)

resids -= est.predict(X)

self.estimators.append(est)

Gradient Boosting as a Python Class: Prediction and Scoring

| # predict by summing across all trees and adding original constant prediction
def predict(self, X):

return self.C + np.sum([est.predict(X) for est in self.estimators], axis=0)
def score(self, X, y):

return r2 score(y, self.predict(X))

booster = GradientBooster(n_estimators=100, max depth=3)
booster.fit (X train, y train)
print('%.3f' % booster.score(X test, y test))

0.796

Thank You!

https://github.com/jeddy92/

https://jeddy92.github.io/

METIS

